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Expressions in the early literature for kinetic exchange in magnetically coupled systems are critically analyzed by
second-order perturbation theory and substituted by corrected versions. The widely held belief that kinetic exchange
is always antiferromagnetic is found to be incorrect. Ferromagnetic kinetic exchange terms are found to be more
important than hitherto assumed. The quantityI /U, whereI stands for intraatomic exchange interactions and
U is the energy difference between the ground electron configuration and a charge-transfer configuration, plays
a crucial role in the competition between ferromagnetic and antiferromagnetic contributions.I /U readily exceeds
the value1/5 considered as an upper limit by Anderson.I is found to be proportional to the number of unpaired
electrons on a given magnetic center.

1. Introduction

With the recent developments in the area of molecular
magnetism1,2 there has been a revival of some old concepts,
which were developed thirty to forty years ago to rationalize
the properties of insulating magnetic materials. The principal
aim of these modern lines of research is the design and
construction of molecule-based ferromagnets. These might offer
some advantages over classical magnetic materials by their
chemical nature. A molecular material is easier to modify and
manipulate, building blocks can be combined in many different
ways, and they can be incorporated into existing architectures.
It is conceivable that the magnetic properties could thus be
combined with optical, mechanical, and electrical properties,
hence creating combinations which cannot be achieved with the
classical magnets.
The old rules and concepts of exchange interactions play an

important part in this research, in particular the competition
between ferromagnetic and antiferromagnetic contributions to
the net exchange. The most widely used effective Hamiltonian
to account for the interactions between nearest-neighbor mag-
netic moments is the so-called Heisenberg-Dirac-van Vleck
(HDvV) operator3

which often appears in the form-JŜA‚ŜB or-2JŜA‚ŜB. In our
formulation eq 1, ferro- and antiferromagnetic situations are
represented by negative and positiveJ values, respectively. This
operator has been extremely successful not only in the field of
magnetically ordered materials4,5 but also in the areas of low-
dimensional magnetic materials6 and clusters of magnetic ions.7

Two distinct contributions toJ were recognized in the early
days: (i) kinetic exchange, originating in a one-electron-transfer

process, and (ii) potential exchange due to true two-center two-
electron exchange interactions. The latter contribution is always
ferromagnetic. It was recognized that in insulating transition
metal ion systems kinetic exchange usually dominates.8 Nu-
merous theoretical models with widely varying degrees of
sophistication were then proposed to calculate the kinetic
exchange contributions.8-12 In general it can be said that the
most sophisticatedab initio calculations have only recently
yielded reliable results.13,14 One of the earliest theoretical
approaches was a valence bond approach in which the mixing
of an electron-transfer configuration into the ground-state
configuration was the key element.8 Experimental studies, in
an interplay with theoretical considerations, led to the formula-
tion of the so-called Goodenough-Kanamori rules, a set of
semiempirical rules which proved to be highly successful in
rationalizing magnetic properties in a great variety of compounds
on a qualitative level.5,8,15-19 By consideration of the symmetry
and the electron occupancy of the interacting orbitals on
neighboring magnetic centers the sign and relative magnitude
of the resulting kinetic exchange can be predicted.
The most important contribution originates when an electron

in a half-filled orbital ai on center A interacts with an electron
in a half-filled orbital bj on center B. According to ref 20 this
contribution is given by

where nA and nB are the numbers of unpaired electrons on
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centers A and B, respectively.hij is a so-called transfer integral
defined by

whereĥ is the appropriate one-electron interaction Hamiltonian.
The quantityU in eq 2 is theU defined in the Hubbard model.21

It corresponds to the energy difference between the ground
electron configuration and the electron-transfer configuration
where one electron has been removed from the one center and
restored on the other. The term in eq 2 is always antiferro-
magnetic.
For the situation of a half-filled orbital on A interacting with

an empty orbital on B the contribution toJ according to ref 20
is given by

The quantityI takes account of the intraatomic exchange
interactions within the charge-transfer electron configuration.
For the interaction of a half-filled orbital on A with a full

orbital on B the contribution according to ref 20 is also given
by

Both contributions 4 and 5 are ferromagnetic. They are smaller
than the antiferromagnetic contribution 2 by the factorI /U.
The last possible type of interaction is that between an empty

orbital and a full orbital. Its contribution toJ has been reported
as ferromagnetic,19 but no algebraic expression is available.
Expressions 2-5 represent a quantitative formulation of the

Goodenough-Kanamori rules. An analysis of these expressions
has led to the surprising conclusion that they cannot all be
correct. One of the aims of the present paper, therefore, is the
presentation of this analysis and the correction of the formulas.
The missing formulas for the interaction of a filled with an
empty orbital will be supplemented.
There is a more important point, however. On the basis of

the fact that contributions 4 and 5 are smaller than contribution
2 by the factorI /U and assuming thatI /U will not exceed a
value of1/5, Anderson concluded that kinetic exchange is always
antiferromagnetic,i.e., contribution 2 is dominating. This
conclusion has not been seriously questioned until very re-
cently,22 and it has been become a paradigm among magne-
tochemists. When ferromagnetic interactions were found in
magnetic clusters, they were usually ascribed to potential
exchange.23,24 The orthogonality principle was invoked, imply-
ing that strong ferromagnetic interactions can only occur when
the magnetic orbitals are mutually orthogonal.24 In the concept
of spin-polarization, which is used to account for ferromagnetic
interactions in both organic and inorganic systems, the two-
electron exchange operator plays an important part.25,26 This
is not the subject of the present paper; we are dealing with
kinetic exchange only,i.e., a pure one-electron interaction.

We will show that kinetic exchange can lead to ferromagnetic
interactions. The quantityI /U in eqs 4 and 5 will be examined
in detail. We will show that, depending on the electron
configuration, it can attain values up to1/2. As a result the
ferromagnetic contributions 4 and 5 become competitive with
the antiferromagnetic contribution 2. In addition, we have
recently shown22 and will briefly summarize here that for some
specific situations we can have ferromagnetic interactions of
the order of magnitude, but reversed sign, of eq 2!

2. Theory

We consider in the following a dimer AB built up of the two
monomeric constituents A and B. In our analysis of the
exchange interactions we will use the Hamiltonian

where

and a similar term can be written forĤB. In eq 7 T̂A is the
kinetic energy operator for all electrons on A, andV̂A is the
one-electron potential energy operator. The third term is the
interelectronic repulsion operator for the electrons centered on
A.
ĤAB is composed of the following two terms:

V̂AB is a collection of all the one-electron terms which must be
added to the Hamiltonian as a result of bringing A and B
together. Similarly, the second term of eq 8 represents all the
additional electron-electron repulsion terms which are not
included inĤA + ĤB. Throughout this paper we neglect spin-
orbit coupling effects,i.e., all spin quantum numbers which will
be used later on are good quantum numbers.
Let us now specify the characteristics of our AB dimer more

precisely. A and B have the electron configurations (a)NA and
(b)NB, respectively. a and b symbolize a collection of nonde-
generate orbitals centered on A and B, respectively. The orbitals
a and b together form an orthonormal set. These orbitals are
not pure metal orbitals, but they contain contributions from
terminal as well as bridging ligands also.NA andNB represent
the total number of electrons on A and B, respectively. The
number of unpaired electrons on A and B are designatednA
andnB, respectively. The effect ofĤA and ĤB (eq 7) can be
summarized as follows. The degeneracy of the single-ion terms
arising from the (a)NA electron configuration is partially lifted
by ĤA. These are the normal splittings seen in, for instance, a
Tanabe-Sugano diagram. Similarly for center B.
Our main interest is in the lowest energy single-ion term

arising from the (a)NA electron configuration. It is characterized
asSAΓA, whereSA ) nA/2 is the spin quantum number andΓA

is the relevant orbital representation. A similar designation is
made for center B. We are interested in the energy differences
between the possible dimer functionsSΓMγ obtained from the
direct product of single-ion ground terms

All the functions of eq 9 are degenerate in the absence of the
interactionĤAB (8). The second term of eq 8,i.e., the two-
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electron operator, always lowers the energies of the highest
dimer spin multiplets relative to the energies of the lowest spin
multiplets. The term potential exchange was used for this
interaction.8 Even though this operator acts diagonally on the
manifold of terms of eq 9, its effect is small, since two-center
two-electron exchange integrals are small. Values of≈1 cm-1,
1 cm-1, 10 cm-1, and 5 cm-1 have been estimated for the
dinuclear complexes Cu2(CH3CO2)4‚2H2O, [L5CrOCrL5], L4-
Ni(µ-O)2NiL4, and Ti2Cl93-, respectively.13,14,27,28 These com-
plexes represent a good variety of bridging geometries and
intermetallic distances, and we can safely conclude that ferro-
magneticJ values of the order of a few hundred wavenumbers
cannot be due to potential exchange. In the present paper we
are interested in large effects, and potential exchange will be
neglected. Of course this is no longer justified when dealing
with exchange splittings of only a few wavenumbers.
We are left with the effect of the one-electron operatorV̂AB,

the kinetic exchange in Andersons terms.8 We use second-order
perturbation theory withV̂AB as a perturbation operator to
calculate the energies of the ground-state dimer functions, eq
9. Functions arising from the charge-transfer (CT) electron
configuration (a)N′A(b)N′B, with N′A ) NA ( 1 andN′B ) NB - 1,
can interact with the functions arising from the (a)NA(b)NB ground
electron configuration under the action ofV̂AB. This CT electron
configuration is obtained by removing an electron from an
orbital ai on A and restoring it on B in orbitalbj. In analogy
with eq 9 we write the similar expression for the CT dimer
functions|CT,S′Γ′M′γ′〉 as follows:

The key matrix element in the perturbation treatment thus
becomes

wherehij is the transfer integral, eq 3,20 andC(S;S′A,S′B) is, as
indicated, a spin dependent factor. We note in passing that the
two-electron operator eq 8 also has matrix elements between
the functions|GR,SΓ,M,γ〉 and |CT,S′,Γ′,M′,γ′〉. Like most
authors we neglect this contribution in the following. This is
again justified as long as we are dealing with large effects,i.e.,
energy splittings of a few hundred wavenumbers. We also note
that, although ligand orbitals do not explicitly occur in our
formalism, they are involved through their admixture with the
metal orbitals. Physically our formal metal-to-metal electron
transfer process can thus acquire considerable ligand-to-metal
or metal-to-ligand charge-transfer character.
In refs 9 and 22 matrix elements of the type in eq 11 were

obtained for a specific electron configuration. Here we are
interested in a general expression, and for this we make use of
Wigner-Racah algebra as discussed in ref 29. This is
developed in the Appendix, and we obtain the following simple
expression:

The curly bracket is a 6j -symbol. Closed expressions for the

relevant 6j -symbols and for the two fractional parentage
coefficientsfA and fB are given below. We distinguish four
cases depending on the occupancy of the relevant interacting
orbitalsai andbj prior to the electron transfer from A to B:

From this we see that the possible values ofS′A andS′B areS′A
) SA ( 1/2 andS′B ) SB ( 1/2, respectively. The only four 6j
-symbols which need to be evaluated are thus30

In eqs 13-16 we defined∆ ) SA - SB andΣ ) SA + SB.
In the Appendix (see eqs A.6-A.8) we derive the following

expressions for the factorsfA andfB. When we add an electron
into an empty orbital on B,S′B can take the valuesSB ( 1/2. In
both casesfB takes the value

When the electron is added into an orbital onBwhich is already
occupied by one electron, we need only to considerS′B ) SB -
1/2. fB then takes the value

When we take an electron from a half-filled orbital on A,fA
takes the value
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|CT,S′Γ′M′γ′〉 ) ((a)NA-1S′AΓ′A) X ((b)NB+1S′BΓ′B)

S′ ) S′A + S′B, ..., |S′A - S′B| (10)

〈GR,SΓMγ|V̂AB|CT,S′Γ′M′γ′〉 ≡ C(S;S′A,S′B)hij (11)

C(S;S′A,S′B) ) xNA(NB + 1)x2SA + 1x2S′B + 1×

{SA SB S
S′B S′A 1/2}fAfB (12)

1. ai is half-filled andbj is half-filled ([
1/2]A f [1/2)B)

2. ai is half-filled andbj is empty ([
1/2]A f [0]B)

3. ai is full andbj is half-filled ([1]A f [1/2]B)

4. ai is full andbj is empty ([1]A f [0]B)

{SA SB S

SB - 1/2 SA - 1/2
1/2}) [ -S(S+ 1)+ Σ(Σ + 1)

2SA(2SA + 1)2SB(2SB + 1)]1/2
(13)

{SA SB S

SB + 1/2 SA - 1/2
1/2})

[ S(S+ 1)- ∆(∆ - 1)

2SA(2SA + 1)(2SB + 1)(2SB + 2)]1/2 (14)
{SA SB S

SB - 1/2 SA + 1/2
1/2})

[ S(S+ 1)- ∆(∆ + 1)

(2SA + 1)(2SA + 2)2SB(2SB + 1)]1/2 (15)
{SA SB S

SB + 1/2 SA + 1/2
1/2})

[ -S(S+ 1)+ (Σ + 1)(Σ + 2)

(2SA + 1)(2SA + 2)(2SB + 1)(2SB + 2)]1/2 (16)

fB )x 1
NB + 1

(17)

fB )x nB + 1

nB(NB + 1)
(18)

fA )x 1
NA

(19)
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on A, we must consider two cases:

for S′A ) SA + 1/2, and

for S′A ) SA - 1/2.
The relevantC-factors of eq 11, for each type of electron

transfer will now be derived separately.
2.1. [1/2]A f [1/2]B. This type of electron transfer naturally

leads to a CT configuration withS′A ) SA - 1/2 andS′B ) SB -
1/2. Using eqs 12, 13, 18, and 19 we obtain

2.2. [1/2]A f [0]B. This electron transfer leads toS′A ) SA
- 1/2, S′B ) SB ( 1/2, and we get

2.3. [1]A f [1/2]B. This electron transfer leads toS′A ) SA
( 1/2 andS′B ) SB - 1/2, and we get

2.4. [1]A f [0]B. This last case is slightly more complicated
and leads to four different sets of matrix elements, sinceS′A )
SA ( 1/2 andS′B ) SB ( 1/2. We get

3. J Values

The C-factors obtained in section 2 will now be used to
compute the energies of theSΓ-terms of eq 9 under theV̂AB

perturbation. This will here be done to second order. The
procedure is as follows: we compute the second-order correc-
tions to the energies and equate these with the eigenvalues of
the HDvV spin Hamiltonian eq 1. The second-order corrections
E2(SΓ) to the energies of theSΓ terms are

E0(SΓ) andE0(S′Γ′) are zeroth order energies of the GR and
CT functions, respectively. The correctionE2(SΓ) leads to an
Sdependent lowering of the dimer ground-state levels. TheS
dependency of the 6j symbols eqs 13-16 directly leads to a
Landé type energy splitting. The eigenvalues of eq 1 also
correspond to a spin dependent Lande´ energy pattern, and
equating the corresponding terms we get

where the constant can be neglected in our discussion of energy
splittings. Eqs 31 and 32 will now be used to derive expressions
for J in terms of the model parametersnA, nB, hij, andU )
E0(S′Γ′) - E0(SΓ). As in section 2, the contributions toJ from
each type of interaction will be presented separately.
3.1. [1/2]A f [1/2]B. In the absence of the interactionĤAB

the |S′A,S′B,S〉 CT functions are all degenerate at an energyU′
above the|SA,SB;S〉 GR functions, which are also degenerate.
Using eqs 22 and 31 we get

For this type of interaction the opposite electron transfer is
always possible, and we get

For a homonuclear homovalent dimer,i.e., A ) B, and A and
B in identical environments we naturally haveU′ ) U′′ ≡ U,
and the total contribution to theJ value is thus antiferromagnetic
and given by

3.2. [1/2]A f [0]B. Because of the possibilitiesS′B ) SB (
1/2 this type of interaction has two contributions to theJ value,
one ferromagnetic and one antiferromagnetic. In the absence
of the interaction the CT functions with (S′A, S′B) ) (SA - 1/2,
SB + 1/2) are all degenerate at an energyU′ above the GR
functions. Similarily, the the CT functions with (S′A, S′B) ) (SA
- 1/2, SB - 1/2) are degenerate at an energyU′′ above the GR
functions. Combining eqs 23 and 31 we get

Similarily, by combining eqs 24 and 31, we find

fA )x nA + 2

(nA + 1)NA

(20)

fA )x nA
(nA + 1)NA

(21)

C(S;S′A,S′B) ) [-S(S+ 1)+ Σ(Σ + 1)
nAnB ]1/2 (22)

C(S;S′A,SB+1/2) ) [S(S+ 1)- ∆(∆ - 1)

nA(nB + 1) ]1/2 (23)

C(S;S′A,SB-1/2) ) [-S(S+ 1)+ Σ(Σ + 1)

nA(nB + 1) ]1/2 (24)

C(S;SA+1/2,S′B) ) [S(S+ 1)- ∆(∆ + 1)

(nA + 1)nB ]1/2 (25)

C(S;SA-1/2,S′B) ) [-S(S+ 1)+ Σ(Σ + 1)

(nA + 1)nB ]1/2 (26)

C(S;SA-1/2,SB-1/2) ) [-S(S+ 1)+ Σ(Σ + 1)

(nA + 1)(nB + 1) ]1/2 (27)

C(S;SA+1/2,SB-1/2) ) [S(S+ 1)- ∆(∆ + 1)

(nA + 1)(nB + 1) ]1/2 (28)

C(S;SA-1/2,SB+1/2) ) [S(S+ 1)- ∆(∆ - 1)

(nA + 1)(nB + 1) ]1/2 (29)

C(S;SA+1/2,SB+1/2) ) [-S(S+ 1)+ (Σ + 1)(Σ + 2)

(nA + 1)(nB + 1) ]1/2
(30)

E2(SΓ) )
-[C(S;S′A,S′B)]

2hij
2

E0(S′Γ′) - E0(SΓ)
(31)

E2(SΓ) ) J
2
S(S+ 1)+ constant (32)

J([1/2]Af[1/2]B) ) 2
nAnB

hij
2

U′ (33)

J([1/2]Ar[1/2]B) ) 2
nAnB

hij
2

U′′ (34)

J([1/2]AT[1/2]B) ) 4
nAnB

hij
2

U
(35)

J([1/2]Af[0]B,S′B)SB+1/2) ) - 2
nA(nB + 1)

hij
2

U′ (36)

J([1/2]Af[0]B,S′B)SB-1/2) ) 2
nA(nB + 1)

hij
2

U′′ (37)
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The competition between eqs 36 and 37 is governed by the
energy ordering of the (SB + 1/2) and (SB - 1/2) terms arising
from the (b)NB+1 electron configuration. Due to Hund’s rule,
U′ < U′′, and we define

In eq 38InB+1 is the so-called intraatomic exchange integral,20

which is discussed more thoroughly in section 4.2. Since the
magnitude ofI is roughly a linear function of the number of
unpaired electrons of the actual configuration, we indicate this
dependence with the subscriptnB + 1, see also section 4.2. By
combining eqs 36, 37, and 38, and assuming that the CT energies
U′ andU′′ are much larger thanInB+1, we get the following
total ferromagnetic contribution to theJ value:

where we have setU′ ≈ U′′) U.
3.3. [1]A f [1/2]B. This case can be treated as discussed in

section 3.2, and we find a resulting ferromagnetic contribution
to theJ value:

3.4. [1]A f [0]B. This type of interaction has four contribu-
tions to theJ value, since there are four different sets of terms
from the CT configuration which have matrix elements to the
ground state, see eqs 27-30. In the absence of the interaction
the CT functions with (S′A, S′B) ) (SA + 1/2, SB + 1/2) are all
degenerate at energyU′, the functions with (S′A, S′B) ) (SA -
1/2, SB + 1/2) are degenerate at energyU′′, the functions with
(S′A, S′B) ) (SA + 1/2, SB - 1/2) are degenerate at energyU′′′,
and the functions with (S′A, S′B) ) (SA - 1/2, SB - 1/2) are
degenerate at energyU′′′′. Using eqs 27-30 and 31 we obtain
two antiferromagnetic and the two ferromagnetic contributions
as follows:

With the same arguments as outlined in section 3.2 we have
U′< (U′′,U′′′) < U′′′′. This means that the weakest and the

strongest interactions are both antiferromagnetic, while the two
intermediate ones are both ferromagnetic. We define

With the assumption that all theI values are much smaller than
theU values and settingU′ ≈ U′′ ≈ U′′′ ≈ U′′′′ ) U, the total
contribution to theJ value then becomes:

The sign of this contribution to theJ value is determined by
the difference of the two intraatomic exchange integralsInA+1
andInB+1.

4. Discussion

Since there is quite an elaborate formalism involved in
obtaining the perturbation matrix elements (11) via theC-factors
of section 2 eqs 22-30, we have made an independent check
of these formulas. This was done by first generating explicit
expressions for the relevant functions of eqs 9 and 10, and then
evaluating eq 11. The same results were obtained in every case,
and we are thus confident that the formulas for the matrix
elements are correct. However, the second-order treatments in
section 3 were all based on the assumptions thatU . |hij| and
U . In. We will therefore in the following two sections discuss
the quantitiesU, hij, andIn and examine the validity of these
assumptions.
4.1. The QuantitiesU and hij. All the contributions to the

total J value contain the ratiohij2/U. A brief review-like note
on the two parametershij andU is therefore in order.
The charge-transfer energyU is a critical parameter of the

model. It is formally defined as a difference between one-center
and two-center repulsion integrals,21 and it corresponds to the
energy difference between the ground electron configuration
and a CT configuration.
For an estimate ofU values we can start by using ionization

potentials of the free ions.8 For trivalent and divalent homo-
nuclear dimeric complexes of the first-row transition metal ions
we would thus expect an energy range of 16-24 and 14-18
eV, respectively.8,31 In a complex or crystal these values can
be significantly reduced,8 and we assume a typical energy range
for U between 5 and 10eV (40000-80000 cm-1). Roughly
the same numbers are valid for heteronuclear dimeric complexes
in which the monomeric constituents are in the same oxidation
state.31

We note in passing that a rather different situation arises in
mixed-valence complexes, when the two metals A and B in the
dimer have different oxidation states. For simplicity we consider
here only dimers in which the valencies are localized. To such
a dimer we must associate two differentU values, one which is
associated with an electron transfer from A to B,UAfB, and
one which is associated with the opposite transferUArB. By
using the ionization potential arguments we find thatUAfB .

(31) Handbook of Chemistry and Physics, 69th ed.; CRC Press: Boca
Raton, FL, 1988-1989 (table with ionization potentials).

(32) Kahn, O.Struct. Bonding1987, 68, 89. Kahn refers to many relevant
papers concerning magnetic properties of heterodinuclear heterovalent
transition metal dimers.

U′′ - U′ ≡ InB+1 (38)

J([1/2]f[0]B) ) - 2
nA(nB + 1)

hij
2

U

InB+1

U
(39)

J([1]Af[1/2]B) ) - 2
(nA + 1)nB

hij
2

U

InA+1

U
(40)

J([1]Af[0]B,S′A)SA-1/2,S′B)SB-1/2) )

2
(nA + 1)(nB + 1)

hij
2

U′′′′ (41)

J([1]Af[0]B,S′A)SA+1/2,S′B)SB-1/2) )

- 2
(nA + 1)(nB + 1)

hij
2

U′′′ (42)

J([1]Af[0]B,S′A)SA-1/2,S′B)SB+1/2) )

- 2
(nA + 1)(nB + 1)

hij
2

U′′ (43)

J([1]Af[0]B,S′A)SA+1/2,S′B)SB+1/2) )

2
(nA + 1)(nB + 1)

hij
2

U′ (44)

U′ ) U′ (45)

U′′ ) U′ + InA+1 (46)

U′′′ ) U′ + InB+1 (47)

U′′′′ ) U′ + InA+1 + InB+1 (48)

J([1]Af[0]B) ) 2
(nA + 1)(nB + 1)

hij
2

U

(InA+1 - InB+1)

U
(49)
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UArB, if the oxidation state of A is higher than that of B. For
such dimersUArB will usually be small and can even be
negative.31 SmallU values below 20000 cm-1 have also been
reported for Mo, W, Tc, and Re dimers with direct strong
metal-metal bonds.33 However, mixed-valence systems and
complexes with strong metal-metal bonds are not the subject
of this paper, and we will use the above mentioned energy range
of 40000-80000 cm-1 as a reasonable estimate ofU values.
Molecular orbital techniques10,19can be used for an estimate

of the order of magnitude of the transfer integralshij. The
quantityhij can be correlated with the energy difference between
the symmetric and the antisymmetric linear combinations of the
atomic orbitalsai and bj. Typical |hij| values obtained by
extended Hu¨ckel and angular overlap approximations on a
variety of dinuclear 3d complexes are in the range 0-6000
cm-1.9,10,34 Our approximation|hij| , U is thus valid. In
addition, both quantitieshij andU are transferable from one
dimer to another as long as the main structural features are
conserved (see section 4.4). Hence, the effective parameter
hij2/U can be considered as transferable between structurally
similar dimers (see section 4.4).
4.2. The Quantity I. The so-called intraatomic exchange

integral20 I appears in the formalism of section 3 when we add
an electron into an empty orbital on B or/and when we remove
an electron from a full orbital on A. We will in the following
investigate the effect and meaning of the single-ion propertyI
for the first case. The second case is equivalent.
We start on center B with a configuration (b)NB,nB, corre-

sponding to a total ofNB electrons,nB of which are unpaired.
The lowest energy term from this electron configuration isSBΓB.
This is the ground term of B withSB ) nB/2. Adding an electron
into an empty orbital on B leads to the electron configuration
(b)NB+1,nB+1. We are interested in those two terms from this
new configuration which arise from the spin- and space-coupling
of SBΓB and the extra electron. We designate them byS′BΓ′B
andS′′BΓ′′B, whereS′B ) SB + 1/2 andS′′B ) SB - 1/2. I is their
first-order energy difference:

I is positive as a result of Hund’s rule.I is in factnot one
intraatomic exchange integral, but it can be expressed as a
weighted sumof true exchange integralsIij of the type

where the indicesi and j run over the half-filled orbitals.
Making the approximation that all the relevantIij ’s are equal,
i.e., Iij ) I, we find thatI is proportional to the number of
unpaired electrons of the actual electron configuration. In our
specific case withnB + 1 unpaired electrons we have

or in general withn unpaired electrons

Equation 53 thus establishes then dependence of the parameter
In. The assumptionIij ) I for all i, j seems at first sight rather

crude. From Griffith35we find for d-orbitals that the 10 possible
exchange integrals all lie in the intervalC < Iij < C + 4B,
with a mean value of

B andC are the Racah interelectronic repulsion parameters. By
using the experimentally verified relation36 4B < C < 5B we
find that eq 53 is at most a factor of 1.5 wrong.
A very gratifying experimental verification of eq 53 is

obtained by a comparison of the first spin-flip excitation energies
of analogous transition metal complexes. In first order this
corresponds to the energy difference betweenS′′BΓ′′B andS′BΓ′B,
i.e., In.
Similar octahedral complexes of the trivalent metalsV3+ (d2),

Cu3+ (d8), Cr3+ (d3), and Fe3+ (d5, high-spin) have their first
spin-flip transitions in the energy intervals 9000-10000, 9600,
14000-15000, and 24000-25000 cm-1, respectively.36 These
have the approximate ratios 2:2:3:5, exactly as predicted by eq
53. This gives I ≈ 4500-5000 cm-1, which is also in
accordance with eq 54. TypicalB andC values for trivalent
transition metal complexes are about 700 and 3000 cm-1,
respectively.36

Similar octahedral complexes of the divalent metals Ti2+ (d2),
V2+ (d3), Cr2+ (d4, high-spin), and Mn2+ (d5, high-spin) have
their first spin-flip transitions at about 7500, 11500-13000,
15000-19000, and 23000-24000 cm-1, respectively.36-38

Again, these energies correspond nicely to the ratio 2:3:4:5
expected on the basis of eq 53. We getI ≈ 4000-4500 cm-1,
again in agreement with eq 54. The repulsion parametersB
andC are usually similar in magnitude for divalent and trivalent
metals.36 These two series of experimentalIn values nicely
support the validity of eq 53.
Anderson estimatedI /U to lie in the range1/10-1/5,8 and he

took I , U to be a good approximation. We used this
approximation in deriving eqs 39, 40, and 49. But we now see
that the effective parameterI/U, but notIn/U, is transferable
between 3d dimers. The quality of the approximationI , U
clearly decreases with increasingn. For a typical valueI/U )
1/10 andn) 5, e.g., high-spin Mn2+ or Fe3+, the ratioIn/U can
get as large as1/2.
4.3. Comparison with the Goodenough-Kanamori Rules.

Table 1 shows a comparison of the corresponding formulas in
ref 20 and section 3 of the present paper for the four types of
interactions. The formulas from ref 20 represent the quantitative
part of the Goodenough-Kanamori rules.
First we note that there is no dispute about the sign, ferro- or

antiferromagnetic, of the first three contributions to the totalJ
value. For the [1/2]A f [1/2]B type interaction our results are
identical to those in refs 8 and 20. The presence of this type of
interaction in an AB system will usually lead to an antiferro-
magnetic overall interaction. This term is dominant because it
is independent of the ratioIn/U, while the remaining three types
of interactions all depend on it.
There are discrepancies between our results and the earlier

ones for the other three types of interactions. The major one
concerns the factor with thenA andnB dependence. For the
[1/2]A f [0]B interaction we find a factor of 2/(nA(nB + 1)) rather
than the earlier reported factor 2/(nAnB). For smallnB values
this is a significant difference. Using then dependence ofIn

(33) Hopkins, M. D.; Gray, H. B.; Miskowski, V. M.Polyhedron1987, 6,
705.

(34) Atanasov, M.; Angelov, S.Chem. Phys.1991, 150, 383.

(35) Griffith, J. S. The Theory of Transition Metal Ions; Cambridge
University Press: Cambridge, 1971. (Appendix 2, Table A26.)

(36) Lever, A. B. P.Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier
Science Publishers B. V.: Amsterdam, 1984; Chapter 6.

(37) Herren, M.; Jacobsen, S. M.; Gu¨del, H. U. Inorg. Chem.1991, 30,
1656.

(38) Riesen, H.; Gu¨del, H. U. Inorg. Chem.1984, 23, 1881

〈Iij〉 ) C+ 5
2
B (54)

I ) 〈S′′BΓ′′B|∑
i<j

1

rij
|S′′BΓ′′B〉 - 〈S′BΓ′B|∑

i<j

1

rij
|S′BΓ′B〉 (50)

Iij ) 〈bi(1)bj(2)| 1r12|bi(2)bj(1)〉 (51)

InB+1 ) (nB + 1)I (52)

In ) nI (53)
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as found in section 4.2, eq 53, we can approximate

This type of interaction is thus effectively proportional to 2/nA.
An exactly analogous difference appears for the [1]A f [1/2]B

interaction, where we find a factor of 2/((nA + 1)nB) compared
to 2/(nAnB) in ref 20. And with the approximation eq 53 we
get an effective 2/nB dependence (see Table 1).
A discussion of the fourth type of interaction, [1]A f [0]B,

is slightly more involved. Anderson19 listed this interaction as
ferromagnetic, but without a formula for a quantitative estimate.
We show that not only the magnitude but also the sign of the
interaction depends on the relative magnitude of the two quan-
titiesInA+1 andInB+1. This is due to the factor (InA+1 - InB+1)
of eq 49. Using again then dependence ofIn we approximate

Depending on the specific situation this type of interaction can
thus be either ferromagnetic or antiferromagnetic, namely,
ferromagnetic ifnA < nB and antiferromagnetic ifnA > nB. In
the case of an AB system with A and B identical we get no
contribution from the [1]A f [0]B interaction. This conclusion
is at variance with earlier discussions of this type of interaction.19

4.4. Comparison with Experiments and Conclusions.We
have applied our model and the formulas developed in section
3 to structurally related series of exchange-coupled dimeric 3d
complexes. The results are gratifying. Experimental trends,
including changes from ferro- to antiferromagnetic coupling,
can be quantitatively reproduced by the model. The transfer-
ability of the model parameters is thus demonstrated.39 As an
illustration we summarize the results obtained in a thorough
study of trivalent 3d metal dimers with a linear M-O-M
bridging geometry. A detailed account of this work is published
separately.39

Table 2 contains the experimental and calculatedJ values.
The nature of the terminal ligands is not relevant for this
discussion. The expressions forJtheory were derived from eq
35 by assumingD4h dimer symmetry and neglecting the two

interactions between the orbitals havingδ symmetry with respect
to the M-O-M axis. We find that the magnetic properties of
the dimers with M3+ ) Ti3+, V3+, Cr3+, Mn3+ (hs), and Mn3+

(ls) are essentially determined by one parameter only, namely,
hêê

2/U. The extra parameterhθθ
2/U is needed for the high-spin

Fe3+ dimers, since we have an interactingσ electron on each
metal center. The agreement between the calculated and the
experimentalJ values is striking. It shows that the effective
parameterh′êê ) hêê

2/U is transferable from one dimer to another
along this series.
The series of complexes presented in Table 2 is of particular

interest because of the large range ofJ values it covers, from
strongly ferro- to very strongly antiferromagnetic. We can thus
confidently assume that the potential exchange contributions
are unimportant. The strong ferromagnetic coupling in the
V-O-V dimers is most significant, because it is in stark
contrast to the general belief that kinetic exchange is always
antiferromagnetic. One of the keys to the ferromagnetic sign
of the net interaction in this case is the degeneracy of theê(≡yz)
andη(≡zx) single-ion orbitals in theC4V local symmetry at the
V3+ site. The dimer ground state is obviously anS) 2 with
an energy difference to the next higher states of several hundred
wavenumbers. This has been elaborated and discussed more
thoroughly in ref 22.
The effect of the ferromagnetic terms 39 and 40 is not visible

in the series of Table 2 because of the highD4h symmetry and
the fact that only homonuclear dimers are included. We have
investigated other series with nonlinear bridges and nonequal(39) Weihe, H.; Gu¨del, H. U. Submitted toInorg. Chem.

Table 1. Comparison of Earlier Results with the Results Obtained in This Papera

interaction type earlier results our results In ) nI

1 [1/2]A f [1/2]B + 2
nAnB

hij
2

U
+ 2
nAnB

hij
2

U
+ 2
nAnB

hij
2

U

2 [1/2]A f [0]B - 2
nAnB

hij
2

U
I
U

- 2
nA(nB + 1)

hij
2

U

InB+1

U
- 2
nA

hij
2

U
I
U

3 [1]A f [1/2]B - 2
nAnB

hij
2

U
I
U

- 2
(nA + 1)nB

hij
2

U

InA+1

U
- 2
nB

hij
2

U
I
U

4 [1]A f [0]B ferromagnetic 2
(nA + 1)(nB + 1)

hij
2

U

(InA+1 - InB+1)

U

2(nA - nB)

(nA + 1)(nB + 1)

hij
2

U
I
U

a The first two columns identify the interaction type as introduced in section 2. The third column gives the contributions to the HDvVJ value
as reported by ref 20. The fourth and fifth columns collect our results. The fifth column was obtained with the approximation eq 53.

J([1/2]Af[0]B) ) - 2
nA(nB + 1)

hij
2

U

InB+1

U
(39)

≈ -
2(nB + 1)

nA(nB + 1)

hij
2

U
I
U

) - 2
nA

hij
2

U
I
U

(55)

J([1]Af[0]B) ) 2
(nA + 1)(nB + 1)

hij
2

U

InA+1 - InB+1

U
(49)

≈ 2(nA - nB)

(nA + 1)(nB + 1)

hij
2

U
I
U

(56)

Table 2. Comparison of Experimental and CalculatedJ Values of
Trivalent Transition Metal Dimers with a Linear Oxo Bridgea

a The metal ions in the dimers are six coordinate. hs and ls stand
for high-spin and low-spin, respectively. The second column gives the
range of experimentalJ values. The third column gives the theoretical
expression for theJ value according to eq 35.ê ) dyz, θ ) dz2, and we
have definedh′ij ≡ hij2/U. hêê andhθθ are the transfer integrals between
the orbitals havingπ andσ symmetry with respect to the M-O-M
axis, respectively. The values in the last column were obtained by using
the parameter valueshêê

2/U ) 480 cm-1 and hθθ
2/U ) 352 cm-1, which

minimize the sum of the absolute differences|Jexp - Jtheory|. (a): The
linear µ-oxo-divanadium system is an orbitally degenerate system;
see ref 22 for details. Proper references to the representative compounds
are given in ref 39.
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metal ions in the dimers, and we generally find very good agree-
ment between calculated and experimental exchange splittings.39

In conclusion, by a critical analysis of some old expressions
in the literature on kinetic exchange we have been able to
provide some corrected versions. For the interaction of a filled
with an empty orbital new expressions for their contribution to
the net exchange are presented. The ratioI /U is crucial for
an evaluation of kinetic exchange contributions. From an
analysis of the quantityI, which results from intraatomic
exchange interactions, we reach the conclusion thatI /U readily
exceeds the range1/10-1/5 estimated by Anderson.8 I is found
to be roughly proportional ton, the number of unpaired
electrons. In contrast tohij2/U andI/U, I /U is not an effective
parameter which is transferable within a series of complexes
with the same M-O-M bridging geometry but varying
isovalent transition metal ions.
The widely held belief that kinetic exchange is always

antiferromagnetic is demonstrated to be incorrect. Ferromag-
netic interactions due to kinetic exchange can result when the
terms 39 and 40 become dominant. In addition, ferromagnetic
contributions of the order of magnitude-hij2/U (see Table 2)
can be observed in some specific situations.22

As long as we are only interested in a qualitative discussion
of the sign of the exchange interaction,i.e., ferromagnetic versus
antiferromagnetic, there is not much difference between Good-
enough’s formulas and our results. But our formulas constitute
a correct basis for quantitative comparisons and predictions of
magnetic properties of structurally related compounds.
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Appendix: Derivation of Eq 12

A formula to calculate theV̂AB interaction matrix element,
eq 11, is derived by Damhus.29 We reproduce his formula in
eq A.1. All the symbols have the same meaning as introduced
in section 2 of this paper. In eq A.1 dim(Γ) means the

dimension of the irreducible representationΓ. κA is an extra
identification label needed if there are several terms from the
(a)NA configuration which transform asSAΓA; and similarily with
κB, κ′A, κ′B, R′′A, andR′′B. (We left these extra, often superfluous,
identification labels out in the main text.){ } is a 6j -symbol,
( ) is a 3Γ-symbol,〈...|...〉 is a coupling coefficient, and [ ] is a
9Γ-symbol. π(ΓAΓ′AΓ′′A) is a phase factor, and〈...|V̂AB|...〉 is the

one-electron parameter,i.e., the transfer integral. The two
quantities appearing on the last two lines of eq A.1 are fractional
parentage type coefficients. The remaining symbols are defined
in section 2.
In order to simplify the use of formula A.1, we label all the

orbitals and all the terms arising from a multielectron config-
uration in a point group containing one-dimensional irreducible
representations only, and use the formula once for each transfer
integral. This reduces the triple summation to one term with
the numerical value

where we have defined

We see now that the right-hand side of eq A.1 equals

where the factorC is composed offA, fB, and all the non phase
factors of eq A.1 in front of the triple sum (see also eq 12 in
the main text).
We will now discuss the onlyfA and fB factors which are

necessary for our specific purpose.fB is related to the addition
of an electron to the the (b)NB configuration. In this way the
termSBΓB is the parent to the possibleS′BΓ′B terms from (b)NB+1

which can be formed by this process. On the other hand,fA is
related to the addition of an electron to the (a)NA-1 configuration.
In this case severalS′AΓ′A terms from (a)NA-1 can be parents to
the desired child, namely,SAΓA from (b)NA. We can omit all
the spatial transformation properties of the involved functions
and write

In eq A.5 (x)(Ni,ni) means the initial configuration with a total of
Ni electrons whereofni of these are unpaired. (x)(Nf,nf) is a similar
specification of the final electron configuration. Addition of
one electron increasesNi by 1, butnf might become equal toni
+ 1 orni - 1, depending on whether the extra electron is added
into an empty or a half-filled orbital, respectively. We naturally
assume that it is possible to add the electron to (x)Ni,ni without
violating the Pauli principle. First, the extra electron can be
added into an emptyx orbital. This means thatSf can take the
valuesSf ) Si + 1/2 andSf ) Si - 1/2. For this situation it can
be shown that29

And second, the extra electron can be added into an orbital
already occupied by one electron. Similarily we find eqs A.7
and A.8:

IC961502+

〈[((a)NAκASAΓA) X ((b)NBκBSBΓB)]SΓMγ|V̂AB|
[((a)NA-1

κ′AS′AΓ′A) X ((b)NB+1
κ′BS′BΓ′B)]S′Γ′M′γ′〉 )

δ(S,S′)δ(M,M′)(-1)SA+SB+S+NB×
xNA(NB + 1)xdim(ΓA)xdim(Γ)xdim(Γ′B)xdim(Γ′) ×

x(2SA + 1)x(2S′B + 1){SA SB S

S′B S′A 1/2}×
∑

R′′A Γ′′A γ′′A
R′′B Γ′′B γ′′B
Γ′′γ′′

{π(ΓAΓ′AΓ′′A)xdim(Γ′′)(Γh Γ′′ Γ′
γ γ′′ γ′ )〈Γ′′Aγ′′A Γh ′′Bγ′′B|Γ′′γ′′〉 ×

〈aR′′A Γ′′Aγ′′A|V̂AB|bR′′B Γ′′Bγ′′B〉[ΓA Γ ΓB

Γ′′A Γ′′ Γ′′B
Γ′A Γ′ Γ′B ]×

〈(a)NA-1(κ′AS′AΓ′A)aR′′A Γ′′A|}(a)NAκASAΓA〉 ×
〈(b)NB(κBSBΓB)bR′′B Γ′′B|}(b)NB+1

κ′BS′BΓ′B〉} (A.1)

hij fA fB (A.2)

hij ≡ 〈aR′′AΓ′′Aγ′′A|V̂AB|bR′′BΓ′′Bγ′′B〉

fA ≡ 〈(a)NA-1(κ′AS′AΓ′A)aR′′AΓ′′A|}(a)NAκASAΓA〉

fB ≡ 〈(b)NB(κBSBΓB)bR′′BΓ′′B|}(b)NB+1
κ′BS′BΓ′B〉 (A.3)

Chij (A.4)

f(Ni,ni;Si,Sf) ≡ 〈(x)(Ni,ni)(Si)x|}(x)(Nf,nf)Sf〉 (A.5)

f(Ni,ni;Si,Sf)Si+
1/2) ) f(Ni,ni;Si,Sf)Si-

1/2) )x 1
Ni + 1

(A.6)

f(Ni,ni;Si)Sf+
1/2,Sf) )x (ni + 1)

ni(Ni + 1)
(A.7)

f(Ni,ni;Si)Sf-
1/2,Sf) )x ni - 1

ni(Ni + 1)
(A.8)
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